Energetics of π - π Stacking Interactions: Implications in the Phase Separation of Intrinsically Disordered Proteins

Andrea Guljas¹, Robert M. Vernon², Julie D. Forman-Kay² and Régis Pomès²

¹Department of Chemistry, University of Toronto, ON, Email: andrea.guljas@mail.utoronto.ca ²Hospital for Sick Children, ON

 π - π stacking interactions are found throughout the proteome and have been shown to play a role in the liquid-liquid phase separation of intrinsically disordered proteins; however, the structural and energetic properties of π - π interactions that drive intra- and intermolecular protein interactions are poorly understood. In this study, we investigate the pairwise interactions of sp²-hybridized groups within proteins through an analysis of the Protein Data Bank. Along with these statistical data, small-molecule representations of these groups are simulated using molecular dynamics, while quantum mechanical and molecular mechanical calculations are used to characterize the energies of π - π interactions across their conformational distributions. Ultimately, this study provides a thorough quantification of the energetics of π -stacking contacts in proteins and evaluates the strengths and limitations of different computational methods in accurately modelling these types of interactions.